Studies using radiometric dating


10-Sep-2020 16:28

A particular isotope of a particular element is called a nuclide. That is, at some point in time, an atom of such a nuclide will undergo radioactive decay and spontaneously transform into a different nuclide.This transformation may be accomplished in a number of different ways, including alpha decay (emission of alpha particles) and beta decay (electron emission, positron emission, or electron capture).

These temperatures are experimentally determined in the lab by artificially resetting sample minerals using a high-temperature furnace.The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate.This normally involves isotope-ratio mass spectrometry. The precision of a dating method depends in part on the half-life of the radioactive isotope involved.Precision is enhanced if measurements are taken on multiple samples from different locations of the rock body.

Alternatively, if several different minerals can be dated from the same sample and are assumed to be formed by the same event and were in equilibrium with the reservoir when they formed, they should form an isochron. In uranium–lead dating, the concordia diagram is used which also decreases the problem of nuclide loss.Another possibility is spontaneous fission into two or more nuclides.